您的位置 首页 golang

供应链

直方图均衡化

直方图均衡化处理的中心思想是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布. 直方图均衡化就是对图像进行非线性拉伸, 重新分配图像像素值, 使一定灰度范围内的像素数量大致相同. 直方图均衡化就是把给定图像的直方图分布改变成"均匀"分布直方图分布.

假设输入是一张 8 比特灰度图(即灰度级为 0 至 255), 则任意灰度级的概率函数为

P(rk)=nk/n,k∈0−255

其中 nk 为灰度级为 k 的像素个数, n 为总像素个数. 设转换函数为 T, 则

sk=T(rk)=255∑j=0knjn

代码实现

import matplotlib.pyplot as pltimport numpy as npimport PIL.Imageimport scipy.miscdef convert_2d(r):    x = np.zeros([256])    for i in range(r.shape[0]):        for j in range(r.shape[1]):            x[r[i][j]] += 1    x = x / r.size    sum_x = np.zeros([256])    for i, _ in enumerate(x):        sum_x[i] = sum(x[:i])    s = np.empty(r.shape, dtype=np.uint8)    for i in range(r.shape[0]):        for j in range(r.shape[1]):            s[i][j] = 255 * sum_x[r[i][j]]    return sim = PIL.Image.open('/img/jp.jpg')im = im.convert('L')im_mat = scipy.misc.fromimage(im)# 显示输入直方图plt.hist(im_mat.reshape([im_mat.size]), 256, normed=1)plt.show()im_converted_mat = convert_2d(im_mat)# 显示输出直方图plt.hist(im_converted_mat.reshape([im_converted_mat.size]), 256, normed=1)plt.show()im_converted = PIL.Image.fromarray(im_converted_mat)im_converted.show()

实验结果

原始直方图

img

直方图均衡化后的直方图, 可以看到图像分布变得均匀

img


文章来源:智云一二三科技

文章标题:供应链

文章地址:https://www.zhihuclub.com/1258.shtml

关于作者: 智云科技

热门文章

发表回复

您的电子邮箱地址不会被公开。

网站地图