您的位置 首页 java

java菜鸟到大佬——全网最全反射机制讲解

目录:

一.反射基础

二.反射的作用

三.反射机制执行的流程

一.反射基础

什么是反射?

反射使 java 代码可以发现有关已加载类的字段,方法和构造函数的信息,并在安全性限制内使用反射对这些字段,方法和构造函数进行操作。

反射的概念是由Smith在1982年首次提出的,主要是指程序可以访问、检测和修改它本身状态或行为的一种能力。这一概念的提出很快引发了计算机科学领域关于应用反射性的研究。它首先被程序语言的设计领域所采用,并在 Lisp 和面向对象方面取得了成绩。其中LEAD/LEAD++ 、OpenC++ 、MetaXa和OpenJava等就是基于反射机制的语言。最近,反射机制也被应用到了视窗系统、操作系统和文件系统中。

Java中,反射是一种强大的工具。它使您能够创建灵活的代码,这些代码可以在运行时装配,无需在组件之间进行源代表链接。反射允许我们在编写与执行时,使我们的程序代码能够接入装载到 jvm 中的类的内部信息,而不是源代码中选定的类协作的代码。这使反射成为构建灵活的应用的主要工具。但需注意的是:如果使用不当,反射的成本很高。

简而言之,指在 Java 程序运行时

  • 给定的一个类(Class)对象,通过反射获取这个类(Class)对象的所有成员结构。
  • 给定的一个具体的对象,能够动态地调用它的方法及对任意属性值进行获取和赋值。

这种动态获取类的内容,创建对象、以及动态调用对象的方法及操作属性的机制为反射。即使该对象的类型在编译期间是未知,该类的 .class 文件不存在,也可以通过反射直接创建对象。

优势

  • 增加程序的灵活性,避免将固有的逻辑程序写死到代码里
  • 代码简洁,可读性强,可提高代码的复用率

劣势

  • 相较直接调用,在量大的情景下反射性能下降
  • 存在一些内部暴露和安全隐患

为什么要有反射

有了反射,我们可以做以下事情:

  • 在运行时检查一个对象
  • 在运行时,根据一个class构造一个对象
  • 在运行时,检查一个对象的属性和方法
  • 在运行时,调用一个对象的任意一个方法
  • 在运行时,改变对象的构造函数,属性,方法的可见性等等

反射是很多框架的共有的方法:

  • 例如 JUnit ,就是使用反射去找出那些带有@Test注解的方法,然后就利用反射在单元测试中调用这些方法
  • 在web框架中,开发人员将他们定义实现的接口和类放到配置文件中,使用反射,他可以动态地在运行时自动初始化这些类和接口 例如, Spring 中一般这样使用配置文件:

< bean id = “someID” class = “com.programcreek.Foo” >

< property name = “someField” value = “someValue” /></ bean >

当Spring读取到bean文件的时候,会调用Class.forName(String)方法”com.programcreek.Foo”来初始化这个类,然后在使用反射正确的get到所配置的属性的set方法,并把相应的值set进去。

servlet web 也是使用这种反射技术:

< servlet >

< servlet name > someServlet </ servlet name >

< servlet class > com.programcreek.WhyReflectionServlet </ servlet class >< servlet >

反射的原理(类加载)

关于类加载机制,大家可以参考我的这篇文章:

深入理解JVM虚拟机——类的加载机制

深入理解JVM虚拟机——JVM是如何实现反射的?

类加载机制流程

java菜鸟到大佬——全网最全反射机制讲解

类的加载

java菜鸟到大佬——全网最全反射机制讲解

反射的原理图解

java菜鸟到大佬——全网最全反射机制讲解

二. 反射的作用

一个类的成员包括以下三种:域信息、 构造器 信息、方法信息。而反射则可以在 运行时 动态获取到这些信息,在使用反射时,我们常用的类有以下五种。

Class类对象的获取

1、获得Class:主要有三种方法:

(1)Object–>getClass

(2)任何数据类型(包括基本的数据类型)都有一个“静态”的class属性

(3)通过class类的 静态方法 :forName(String className)(最常用)

 package fanshe;

public class Fanshe {

    public static  void  main(String[] args) {

       //第一种方式获取Class对象
        Student stu1 = new Student();//这一new 产生一个Student对象,一个Class对象。

        Class stuClass = stu1.getClass();//获取Class对象

        System.out.println(stuClass.getName());
      

       //第二种方式获取Class对象
        Class stuClass2 = Student.class;

        System.out.println(stuClass == stuClass2);//判断第一种方式获取的Class对象和第二种方式获取的是否是同一个

      
      //第三种方式获取Class对象
        try {

            Class stuClass3 = Class.forName("fanshe.Student");//注意此 字符串 必须是真实路径,就是带包名的类路径,包名.类名

            System.out.println(stuClass3 == stuClass2);//判断三种方式是否获取的是同一个Class对象

        } catch (ClassNotFoundException e) {

            e.printStackTrace();

        }

    }
}  

注意,在运行期间,一个类,只有一个Class对象产生,所以打印结果都是true;

三种方式中,常用第三种,第一种对象都有了还要反射干什么,第二种需要导入类包,依赖太强,不导包就抛编译错误。一般都使用第三种,一个字符串可以传入也可以写在配置文件中等多种方法。

Class类的方法

getName、getCanonicalName与getSimpleName的区别

  • getSimpleName:只获取类名
  • getName:类的全限定名,jvm中Class的表示,可以用于动态加载Class对象,例如Class.forName。
  • getCanonicalName:返回更容易理解的表示,主要用于输出(toString)或log打印,大多数情况下和getName一样,但是在内部类、数组等类型的表示形式就不同了。

Constructor 类及其获取对象方法

  • Constructor提供了一个类的单个构造函数的信息和访问。
  • Constructor允许在将实际参数与newInstance()与底层构造函数的形式参数进行匹配时进行扩展转换,但如果发生缩小转换,则抛出IllegalArgument Exception

Constructor类的方法

获取Constructor对象是通过Class类中的方法获取的,Class类与Constructor相关的主要方法如下:

使用反射技术获取构造器对象并使用

 @Test
public void test2() throws NoSuchMethodException {
    Class<Student> sc = Student.class;
     // 1. 拿到所有的构造器
    Constructor<?>[] constructors = sc.getDeclaredConstructors();
    // 输出构造器的名称+参数个数
    for (Constructor<?> constructor : constructors) {
        System.out.println(constructor.getName() + " 参数个数:" + constructor.getParameterCount() + "个");
    }
    // 2. 拿到单个构造器
    Constructor<Student> constructor = sc.getDeclaredConstructor(String.class,  String .class);
    System.out.println(constructor.getName() + "参数个数:" + constructor.getParameterCount());
}  

使用反射技术获取构造器对象并使用获取到的内容创建出一个对象

反射得到构造器之后的作用仍是创建一个对象,如果说构造器是public,就可以直接new对象,如果说是构造器是私有的 private ,需要提前将构造器进行暴力反射,再进行构造对象。

反射是可以直接破换掉封装性的,私有的也是可以执行的。

Field类及其用法

Field 提供有关类或接口的单个字段的信息,以及对它的动态访问权限。反射的字段可能是一个类(静态)字段或实例字段。

Field类涉及的get方法

同样的道理,我们可以通过 Class类 的提供的方法来获取代表字段信息的Field对象,Class类与Field对象相关方法如下:

下面的代码演示了上述方法的使用过程

 public class ReflectField {

    public static void main(String[] args) throws ClassNotFoundException, NoSuchFieldException {

        Class<?> clazz = Class.forName("reflect.Student");

        //获取指定字段名称的Field类,注意字段修饰符必须为public而且存在该字段,

        // 否则抛NoSuchFieldException

        Field field = clazz.getField("age");

        System.out.println("field:" + field);

       //获取所有修饰符为public的字段,包含父类字段,注意修饰符为public才会获取

        Field fields[] = clazz.getFields();

        for (Field f : fields) {

            System.out.println("f:" + f.getDeclaringClass());

        }

        System.out.println("================getDeclaredFields====================");

        //获取当前类所字段(包含private字段),注意不包含父类的字段

        Field fields2[] = clazz.getDeclaredFields();

        for (Field f : fields2) {

            System.out.println("f2:" + f.getDeclaringClass());

        }

        //获取指定字段名称的Field类,可以是任意修饰符的自动,注意不包含父类的字段

        Field field2 = clazz.getDeclaredField("desc");

        System.out.println("field2:" + field2);

    }

/**

 输出结果:

 field:public int reflect.Person.age

 f:public java.lang.String reflect.Student.desc

 f:public int reflect.Person.age

 f:public java.lang.String reflect.Person.name

 ================getDeclaredFields====================

 f2:public java.lang.String reflect.Student.desc

 f2:private int reflect.Student.score

 field2:public java.lang.String reflect.Student.desc

 */}

class Person {

    public int age;

    public String name;

//省略set和get方法}

    class Student  extends  Person {

        public String desc;

        private int score;
        //省略set和get方法
    }  

上述方法需要注意的是,如果我们不期望获取其父类的字段,则需使用Class类的getDeclaredField/getDeclaredFields方法来获取字段即可,倘若需要连带获取到父类的字段,那么请使用Class类的getField/getFields,但是也只能获取到public修饰的的字段,无法获取父类的私有字段。下面将通过Field类本身的方法对指定类属性赋值,代码演示如下:

其中的set(Object obj, Object value)方法是Field类本身的方法,用于设置字段的值,而get(Object obj)则是获取字段的值,当然关于Field类还有其他常用的方法如下:

上述方法可能是较为常用的,事实上在设置值的方法上,Field类还提供了专门针对基本数据类型的方法,如setInt()/getInt()、setBoolean()/getBoolean、setChar()/getChar()等等方法,这里就不全部列出了,需要时查API文档即可。需要特别注意的是被final关键字修饰的Field字段是安全的,在运行时可以接收任何修改,但最终其实际值是不会发生改变的。

Method类及其用法

Method 提供关于类或接口上单独某个方法(以及如何访问该方法)的信息,所反映的方法可能是类方法或实例方法(包括抽象方法)。

Method 类的主要方法

下面是Class类获取Method对象相关的方法:

同样通过案例演示上述方法:

 import java.lang.reflect.Method;

public class ReflectMethod {

    public static void main(String[] args) throws ClassNotFoundException, NoSuchMethodException {

        Class clazz = Class.forName("reflect.Circle");

       //根据参数获取public的Method,包含继承自父类的方法

        Method method = clazz.getMethod("draw", int.class, String.class);

        System.out.println("method:" + method);

       //获取所有public的方法:

        Method[] methods = clazz.getMethods();

        for (Method m : methods) {

            System.out.println("m::" + m);

        }

        System.out.println("=========================================");

        //获取当前类的方法包含private,该方法无法获取继承自父类的method

        Method method1 = clazz.getDeclaredMethod("drawCircle");

        System.out.println("method1::" + method1);

       //获取当前类的所有方法包含private,该方法无法获取继承自父类的method

        Method[] methods1 = clazz.getDeclaredMethods();

        for (Method m : methods1) {

            System.out.println("m1::" + m);

        }

    }
}

class Shape {

    public void draw() {

        System.out.println("draw");

    }

    public void draw(int count, String name) {

        System.out.println("draw " + name + ",count=" + count);

    }

}

class Circle extends Shape {

    private void drawCircle() {

        System.out.println("drawCircle");

    }

    public int getAllCount() {

        return 100;

    }
}

  

输出结果:

method:public void reflect.Shape.draw(int, java.lang .String)

m::public int reflect.Circle.getAllCount()

m::public void reflect.Shape.draw()

m::public void reflect.Shape.draw(int,java.lang.String)

m::public final void java.lang.Object.wait(long,int) throws java.lang.InterruptedException

m::public final native void java.lang.Object.wait(long) throws java.lang.InterruptedException

m::public final void java.lang.Object.wait() throws java.lang.InterruptedException

m::public boolean java.lang.Object.equals(java.lang.Object)

m::public java.lang.String java.lang.Object.toString()

m::public native int java.lang.Object.hashCode()

m::public final native java.lang.Class java.lang.Object.getClass()

m::public final native void java.lang.Object.notify()

m::public final native void java.lang.Object.notifyAll()

=========================================

method1::private void reflect.Circle.drawCircle()

m1::public int reflect.Circle.getAllCount()

m1::private void reflect.Circle.drawCircle()

在通过getMethods方法获取Method对象时,会把父类的方法也获取到,如上的输出结果,把Object类的方法都打印出来了。而getDeclaredMethod/getDeclaredMethods方法都只能获取当前类的方法。我们在使用时根据情况选择即可。下面将演示通过Method对象调用指定类的方法:

Class clazz = Class.forName(“reflect.Circle”);

//创建对象

Circle circle = (Circle) clazz.newInstance();

//获取指定参数的方法对象

MethodMethod method = clazz.getMethod(“draw”,int.class,String.class);

//通过Method对象的invoke(Object obj,Object… args)方法调用

method.invoke(circle,15,”圈圈”);

//对私有无参方法的操作

Method method1 = clazz.getDeclaredMethod(“drawCircle”);

//修改私有方法的访问标识

method1.setAccessible(true);

method1.invoke(circle);

//对有返回值得方法操作

Method method2 =clazz.getDeclaredMethod(“getAllCount”);

Integer count = (Integer) method2.invoke(circle);

System.out.println(“count:”+count);

输出结果

draw 圈圈,count=15

drawCircle

count:100

在上述代码中调用方法,使用了Method类的invoke(Object obj,Object… args)第一个参数代表调用的对象,第二个参数传递的调用方法的参数。这样就完成了类方法的动态调用。

三. 反射机制执行的流程

— 测试代码

— 执行流程图

反射获取类实例

首先调用了 java.lang.Class 的静态方法,获取类信息。

 @CallerSensitive
public static Class<?> forName(String className) throws ClassNotFoundException {

     // 先通过反射,获取调用进来的类信息,从而获取当前的 classLoader
    Class<?> caller = Reflection.getCallerClass();

    // 调用native方法进行获取class信息
    return forName0(className, true, ClassLoader.getClassLoader(caller), caller);

}  

forName()反射获取类信息,并没有将实现留给了java,而是交给了jvm去加载。

主要是先获取 ClassLoader, 然后调用 native 方法,获取信息,加载类则是回调 java.lang.ClassLoader.

最后,jvm又会回调 ClassLoader 进类加载。

   //

    public Class<?> loadClass(String name) throws ClassNotFoundException {

        return loadClass(name, false);

    }

// sun.misc.Launcher

    public Class<?> loadClass(String var1, boolean var2) throws ClassNotFoundException {

        int var3 = var1.lastIndexOf(46);

        if(var3 != -1) {

            SecurityManager var4 = System.getSecurityManager();

            if(var4 != null) {

                var4.checkPackageAccess(var1.substring(0, var3));

            }

        }

        if(this.ucp.knownToNotExist(var1)) {

            Class var5 = this.findLoadedClass(var1);

            if(var5 != null) {

                if(var2) {

                    this.resolveClass(var5);

                }

                return var5;

            } else {

                throw new ClassNotFoundException(var1);

            }

        } else {

            return super.loadClass(var1, var2);

        }

    }

// java.lang.ClassLoader

    protected Class<?> loadClass(String name, boolean resolve)

            throws ClassNotFoundException

    {

// 先获取锁

        synchronized (getClassLoadingLock(name)) {

// First, check if the class has already been loaded

// 如果已经加载了的话,就不用再加载了

            Class<?> c = findLoadedClass(name);

            if (c == null) {

                long t0 = System.nanoTime();

                try {

// 双亲委托加载

                    if (parent != null) {

                        c = parent.loadClass(name, false);

                    } else {

                        c = findBootstrapClassOrNull(name);

                    }

                } catch (ClassNotFoundException e) {

// ClassNotFoundException thrown if class not found

// from the non-null parent class loader

                }

// 父类没有加载到时,再自己加载

                if (c == null) {

// If still not found, then invoke findClass in order

// to find the class.

                    long t1 = System.nanoTime();

                    c = findClass(name);

// this is the defining class loader; record the stats

                    sun.misc.PerfCounter.getParentDelegationTime().addTime(t1 - t0);

                    sun.misc.PerfCounter.getFindClassTime().addElapsedTimeFrom(t1);

                    sun.misc.PerfCounter.getFindClasses().increment();

                }

            }

            if (resolve) {

                resolveClass(c);

            }

            return c;

        }

    }

    protected Object getClassLoadingLock(String className) {

        Object lock = this;

        if (parallelLockMap != null) {

// 使用 ConcurrentHashMap来保存锁

            Object newLock = new Object();

            lock = parallelLockMap.putIfAbsent(className, newLock);

            if (lock == null) {

                lock = newLock;

            }

        }

        return lock;

    }

    protected final Class<?> findLoadedClass(String name) {

        if (!checkName(name))

            return null;

        return findLoadedClass0(name);

    }  

下面来看一下 newInstance() 的实现方式。

 // 首先肯定是 Class.newInstance

    @CallerSensitive

    public T newInstance()

            throws InstantiationException, IllegalAccessException {

        if (System.getSecurityManager() != null) {

            checkMemberAccess(Member.PUBLIC, Reflection.getCallerClass(), false);

        }

// NOTE: the following code may not be strictly correct under

// the current Java memory model.

// Constructor lookup

// newInstance() 其实相当于调用类的无参构造函数,所以,首先要找到其无参构造器

        if (cachedConstructor == null) {

            if (this == Class.class) {

// 不允许调用 Class 的 newInstance() 方法

                throw new IllegalAccessException(

                        "Can not call newInstance() on the Class for java.lang.Class"

                );

            }

            try {

// 获取无参构造器

                Class<?>[] empty = {};

                final Constructor<T> c = getConstructor0(empty, Member.DECLARED);

// Disable accessibility checks on the constructor

// since we have to do the security check here anyway

// (the stack depth is wrong for the Constructor's

// security check to work)

                java.security.AccessController.doPrivileged(

                        new java.security.PrivilegedAction<Void>() {

                            public Void run() {

                                c.setAccessible(true);

                                return null;

                            }

                        });

                cachedConstructor = c;

            } catch (NoSuchMethodException e) {

                throw (InstantiationException)

                        new InstantiationException(getName()).initCause(e);

            }

        }

        Constructor<T> tmpConstructor = cachedConstructor;

        // Security check (same as in java.lang.reflect.Constructor)

        int modifiers = tmpConstructor.getModifiers();

        if (!Reflection.quickCheckMemberAccess(this, modifiers)) {

            Class<?> caller = Reflection.getCallerClass();

            if (newInstanceCallerCache != caller) {

                Reflection.ensureMemberAccess(caller, this, null, modifiers);

                newInstanceCallerCache = caller;

            }

        }

        // Run constructor

        try {

         // 调用无参构造器

            return tmpConstructor.newInstance((Object[]) null);

        } catch (InvocationTargetException e) {

            Unsafe.getUnsafe().throwException(e.getTargetException());

          // Not reached

            return null;

        }

    }
  

newInstance() 主要做了三件事:

  • 权限检测,如果不通过直接抛出异常;查找无参构造器,并将其缓存起来;调用具体方法的无参构造方法,生成实例并返回;

下面是获取构造器的过程:

    private Constructor<T> getConstructor0(Class<?>[] parameterTypes,

                                      int which) throws NoSuchMethodException

    {

// 获取所有构造器

        Constructor<T>[] constructors = privateGetDeclaredConstructors((which == Member.PUBLIC));

        for (Constructor<T> constructor : constructors) {

            if (arrayContentsEq(parameterTypes,

                    constructor.getParameterTypes())) {

                return getReflectionFactory().copyConstructor(constructor);

            }

        }

        throw new NoSuchMethodException(getName() + ".<init>" + argumentTypesToString(parameterTypes));

    }  

getConstructor0() 为获取匹配的构造方器;分三步:

  • 先获取所有的constructors, 然后通过进行参数类型比较;找到匹配后,通过 ReflectionFactory copy一份constructor返回;否则抛出 NoSuchMethodException;
   // 获取当前类所有的构造方法,通过jvm或者缓存

// Returns an array of "root" constructors. These Constructor

// objects must NOT be propagated to the outside world, but must

// instead be copied via ReflectionFactory.copyConstructor.

    private Constructor<T>[] privateGetDeclaredConstructors(boolean publicOnly) {

        checkInitted();

        Constructor<T>[] res;

// 调用 reflectionData(), 获取保存的信息,使用软引用保存,从而使内存不够可以回收

        ReflectionData<T> rd = reflectionData();

        if (rd != null) {

            res = publicOnly ? rd.publicConstructors : rd.declaredConstructors;

// 存在缓存,则直接返回

            if (res != null) return res;

        }

// No cached value available; request value from VM

        if (isInterface()) {

            @SuppressWarnings("unchecked")

            Constructor<T>[] temporaryRes = (Constructor<T>[]) new Constructor<?>[0];

            res = temporaryRes;

        } else {

// 使用native方法从jvm获取构造器

            res = getDeclaredConstructors0(publicOnly);

        }

        if (rd != null) {

// 最后,将从jvm中读取的内容,存入缓存

            if (publicOnly) {

                rd.publicConstructors = res;

            } else {

                rd.declaredConstructors = res;

            }

        }

        return res;

    }

// Lazily create and cache ReflectionData

    private ReflectionData<T> reflectionData() {

        SoftReference<ReflectionData<T>> reflectionData = this.reflectionData;

        int classRedefinedCount = this.classRedefinedCount;

        ReflectionData<T> rd;

        if (useCaches &&

                reflectionData != null &&

                (rd = reflectionData.get()) != null &&

                rd.redefinedCount == classRedefinedCount) {

            return rd;

        }

// else no SoftReference or cleared SoftReference or stale ReflectionData

// -> create and replace new instance

        return newReflectionData(reflectionData, classRedefinedCount);

    }

// 新创建缓存,保存反射信息

    private ReflectionData<T> newReflectionData(SoftReference<ReflectionData<T>> oldReflectionData,

                                                int classRedefinedCount) {

        if (!useCaches) return null;

// 使用cas保证更新的线程安全性,所以反射是保证线程安全的

        while (true) {

            ReflectionData<T> rd = new ReflectionData<>(classRedefinedCount);

// try to CAS it...

            if (Atomic.casReflectionData(this, oldReflectionData, new SoftReference<>(rd))) {

                return rd;

            }

// 先使用CAS更新,如果更新成功,则立即返回,否则测查当前已被其他线程更新的情况,如果和自己想要更新的状态一致,则也算是成功了

            oldReflectionData = this.reflectionData;

            classRedefinedCount = this.classRedefinedCount;

            if (oldReflectionData != null &&

                    (rd = oldReflectionData.get()) != null &&

                    rd.redefinedCount == classRedefinedCount) {

                return rd;

            }

        }

    }
  

如上,privateGetDeclaredConstructors(), 获取所有的构造器主要步骤;

  • 先尝试从缓存中获取;如果缓存没有,则从jvm中重新获取,并存入缓存,缓存使用软引用进行保存,保证内存可用;

另外,使用 relactionData() 进行缓存保存;ReflectionData 的数据结构如下。

   // reflection data that might get invalidated when JVM TI RedefineClasses() is called

    private static class ReflectionData<T> {

        volatile Field[] declaredFields;

        volatile Field[] publicFields;

        volatile Method[] declaredMethods;

        volatile Method[] publicMethods;

        volatile Constructor<T>[] declaredConstructors;

        volatile Constructor<T>[] publicConstructors;

// Intermediate results for getFields and getMethods

        volatile Field[] declaredPublicFields;

        volatile Method[] declaredPublicMethods;

        volatile Class<?>[] interfaces;

// Value of classRedefinedCount when we created this ReflectionData instance

        final int redefinedCount;

        ReflectionData(int redefinedCount) {

            this.redefinedCount = redefinedCount;

        }

    }  

其中,还有一个点,就是如何比较构造是否是要查找构造器,其实就是比较类型完成相等就完了,有一个不相等则返回false。

 private static boolean arrayContentsEq(Object[] a1, Object[] a2) {

        if (a1 == null) {

            return a2 == null || a2.length == 0;

        }

        if (a2 == null) {

            return a1.length == 0;

        }

        if (a1.length != a2.length) {

            return false;

        }

        for (int i = 0; i < a1.length; i++) {

            if (a1[i] != a2[i]) {

                return false;

            }

        }

        return true;

    }

// sun.reflect.ReflectionFactory

    /**
     * Makes a copy of the passed constructor. The returned
     * <p>
     * constructor is a "child" of the passed one; see the comments
     * <p>
     * in Constructor.java for details.
     */
    public <T> Constructor<T> copyConstructor(Constructor<T> arg) {

        return langReflectAccess().copyConstructor(arg);

    }


// java.lang.reflect.Constructor, copy 其实就是新new一个 Constructor 出来

    Constructor<T> copy() {

// This routine enables sharing of ConstructorAccessor objects

// among Constructor objects which refer to the same underlying

// method in the VM. (All of this contortion is only necessary

// because of the "accessibility" bit in AccessibleObject,

// which implicitly requires that new java.lang.reflect

// objects be fabricated for each reflective call on Class

// objects.)

        if (this.root != null)

            throw new IllegalArgumentException("Can not copy a non-root Constructor");

        Constructor<T> res = new Constructor<>(clazz,

                parameterTypes,

                exceptionTypes, modifiers, slot,

                signature,

                annotations,

                parameterAnnotations);

// root 指向当前 constructor

        res.root = this;

// Might as well eagerly propagate this if already present

        res.constructorAccessor = constructorAccessor;

        return res;

    }  

通过上面,获取到 Constructor 了。

接下来就只需调用其相应构造器的 newInstance(),即返回实例了。

    // return tmpConstructor.newInstance((Object[])null);

// java.lang.reflect.Constructor

    @CallerSensitive

    public T newInstance(Object... initargs)

            throws InstantiationException, IllegalAccessException,

            IllegalArgumentException, InvocationTargetException {

        if (!override) {

            if (!Reflection.quickCheckMemberAccess(clazz, modifiers)) {

                Class<?> caller = Reflection.getCallerClass();

                checkAccess(caller, clazz, null, modifiers);

            }

        }

        if ((clazz.getModifiers() & Modifier.ENUM) != 0)

            throw new IllegalArgumentException("Cannot reflectively create enum objects");

        ConstructorAccessor ca = constructorAccessor; // read volatile

        if (ca == null) {

            ca = acquireConstructorAccessor();

        }

        @SuppressWarnings("unchecked")

        T inst = (T) ca.newInstance(initargs);

        return inst;

    }

// sun.reflect.DelegatingConstructorAccessorImpl

    public Object newInstance(Object[] args)

            throws InstantiationException,

            IllegalArgumentException,

            InvocationTargetException {

        return delegate.newInstance(args);

    }

// sun.reflect.NativeConstructorAccessorImpl

    public Object newInstance(Object[] args)

            throws InstantiationException,

            IllegalArgumentException,

            InvocationTargetException {

// We can't inflate a constructor belonging to a vm-anonymous class

// because that kind of class can't be referred to by name, hence can't

// be found from the generated bytecode.

        if (++numInvocations > ReflectionFactory.inflationThreshold()

                && !ReflectUtil.isVMAnonymousClass(c.getDeclaringClass())) {

            ConstructorAccessorImpl acc = (ConstructorAccessorImpl)

                    new MethodAccessorGenerator().

                            generateConstructor(c.getDeclaringClass(),

                                    c.getParameterTypes(),

                                    c.getExceptionTypes(),

                                    c.getModifiers());

            parent.setDelegate(acc);

        }

// 调用native方法,进行调用 constructor

        return newInstance0(c, args);

    }  

返回构造器的实例后,可以根据外部进行进行类型转换,从而使用接口或方法进行调用实例功能了。

反射获取方法

  • 第一步,先获取 Method ;
 // java.lang.Class
@CallerSensitive
public Method getDeclaredMethod(String name, Class<?>... parameterTypes)

        throws NoSuchMethodException, SecurityException {

    checkMemberAccess(Member.DECLARED, Reflection.getCallerClass(), true);

    Method method = searchMethods(privateGetDeclaredMethods(false), name, parameterTypes);

    if (method == null) {

        throw new NoSuchMethodException(getName() + "." + name + argumentTypesToString(parameterTypes));

    }

    return method;

}  

忽略第一个检查权限,剩下就只有两个动作了。

  • 获取所有方法列表;根据方法名称和方法列表,选出符合要求的方法;如果没有找到相应方法,抛出异常,否则返回对应方法;

所以,先看一下怎样获取类声明的所有方法?

   // Returns an array of "root" methods. These Method objects must NOT

// be propagated to the outside world, but must instead be copied

// via ReflectionFactory.copyMethod.

    private Method[] privateGetDeclaredMethods(boolean publicOnly) {

        checkInitted();

        Method[] res;

        ReflectionData<T> rd = reflectionData();

        if (rd != null) {

            res = publicOnly ? rd.declaredPublicMethods : rd.declaredMethods;

            if (res != null) return res;

        }

// No cached value available; request value from VM

        res = Reflection.filterMethods(this, getDeclaredMethods0(publicOnly));

        if (rd != null) {

            if (publicOnly) {

                rd.declaredPublicMethods = res;

            } else {

                rd.declaredMethods = res;

            }

        }

        return res;

    }  

很相似,和获取所有构造器的方法很相似,都是先从缓存中获取方法,如果没有,则从jvm中获取。

不同的是,方法列表需要进行过滤 Reflection.filterMethods;当然后面看来,这个方法我们一般不会派上用场。

     // sun.misc.Reflection

    public static Method[] filterMethods(Class<?> containingClass, Method[] methods) {

        if (methodFilterMap == null) {

// Bootstrapping

            return methods;

        }

        return (Method[]) filter(methods, methodFilterMap.get(containingClass));

    }

// 可以过滤指定的方法,一般为空,如果要指定过滤,可以调用 registerMethodsToFilter(), 或者...

    private static Member[] filter(Member[] members, String[] filteredNames) {

        if ((filteredNames == null) || (members.length == 0)) {

            return members;

        }

        int numNewMembers = 0;

        for (Member member : members) {

            boolean shouldSkip = false;

            for (String filteredName : filteredNames) {

                if (member.getName() == filteredName) {

                    shouldSkip = true;

                    break;

                }

            }

            if (!shouldSkip) {

                ++numNewMembers;

            }

        }

        Member[] newMembers =

                (Member[]) Array.newInstance(members[0].getClass(), numNewMembers);

        int destIdx = 0;

        for (Member member : members) {

            boolean shouldSkip = false;

            for (String filteredName : filteredNames) {

                if (member.getName() == filteredName) {

                    shouldSkip = true;

                    break;

                }

            }

            if (!shouldSkip) {

                newMembers[destIdx++] = member;

            }

        }

        return newMembers;

    }  

  • 第二步,根据方法名和参数类型过滤指定方法返回
   private static Method searchMethods(Method[] methods,

                                        String name,

                                        Class<?>[] parameterTypes) {

        Method res = null;

// 使用常量池,避免重复创建String

        String internedName = name.intern();

        for (int i = 0; i < methods.length; i++) {

            Method m = methods[i];

            if (m.getName() == internedName

                    && arrayContentsEq(parameterTypes, m.getParameterTypes())

                    && (res == null

                    || res.getReturnType().isAssignableFrom(m.getReturnType())))

                res = m;

        }

        return (res == null ? res : getReflectionFactory().copyMethod(res));

    }  

大概意思看得明白,就是匹配到方法名,然后参数类型匹配,才可以。

  • 但是可以看到,匹配到一个方法,并没有退出for循环,而是继续进行匹配。
  • 这里是匹配最精确的子类进行返回(最优匹配)
  • 最后,还是通过 ReflectionFactory, copy 方法后返回。

调用 method.invoke() 方法

 @CallerSensitive

public Object invoke(Object obj, Object... args)

        throws IllegalAccessException, IllegalArgumentException,

        InvocationTargetException

{

    if (!override) {

        if (!Reflection.quickCheckMemberAccess(clazz, modifiers)) {

            Class<?> caller = Reflection.getCallerClass();

            checkAccess(caller, clazz, obj, modifiers);

        }

    }

    MethodAccessor ma = methodAccessor; // read volatile

    if (ma == null) {

        ma = acquireMethodAccessor();

    }

    return ma.invoke(obj, args);

}
  

invoke时,是通过 MethodAccessor 进行调用的,而 MethodAccessor 是个接口,在第一次时调用 acquireMethodAccessor() 进行新创建。

  // probably make the implementation more scalable.

    private MethodAccessor acquireMethodAccessor() {

// First check to see if one has been created yet, and take it

// if so

        MethodAccessor tmp = null;

        if (root != null) tmp = root.getMethodAccessor();

        if (tmp != null) {

// 存在缓存时,存入 methodAccessor,否则调用 ReflectionFactory 创建新的 MethodAccessor

            methodAccessor = tmp;

        } else {

// Otherwise fabricate one and propagate it up to the root

            tmp = reflectionFactory.newMethodAccessor(this);

            setMethodAccessor(tmp);

        }

        return tmp;

    }

// sun.reflect.ReflectionFactory

    public MethodAccessor newMethodAccessor(Method method) {

        checkInitted();

        if (noInflation && !ReflectUtil.isVMAnonymousClass(method.getDeclaringClass())) {

            return new MethodAccessorGenerator().

                    generateMethod(method.getDeclaringClass(),

                            method.getName(),

                            method.getParameterTypes(),

                            method.getReturnType(),

                            method.getExceptionTypes(),

                            method.getModifiers());

        } else {

            NativeMethodAccessorImpl acc =

                    new NativeMethodAccessorImpl(method);

            DelegatingMethodAccessorImpl res =

                    new DelegatingMethodAccessorImpl(acc);

            acc.setParent(res);

            return res;

        }

    }  

两个Accessor详情:

   // NativeMethodAccessorImpl / DelegatingMethodAccessorImplclass NativeMethodAccessorImpl extends MethodAccessorImpl {

    private final Method method;

    private DelegatingMethodAccessorImpl parent;

    private int numInvocations;

    NativeMethodAccessorImpl(Method method) {

        this.method = method;

    }

    public Object invoke(Object obj, Object[] args)

            throws IllegalArgumentException, InvocationTargetException {

// We can't inflate methods belonging to vm-anonymous classes because

// that kind of class can't be referred to by name, hence can't be

// found from the generated bytecode.

        if (++numInvocations > ReflectionFactory.inflationThreshold()

                && !ReflectUtil.isVMAnonymousClass(method.getDeclaringClass())) {

            MethodAccessorImpl acc = (MethodAccessorImpl)

                    new MethodAccessorGenerator().

                            generateMethod(method.getDeclaringClass(),

                                    method.getName(),

                                    method.getParameterTypes(),

                                    method.getReturnType(),

                                    method.getExceptionTypes(),

                                    method.getModifiers());

            parent.setDelegate(acc);

        }

        return invoke0(method, obj, args);

    }

    void setParent(DelegatingMethodAccessorImpl parent) {

        this.parent = parent;

    }

    private static native Object invoke0(Method m, Object obj, Object[] args);
}

class DelegatingMethodAccessorImpl extends MethodAccessorImpl {

    private MethodAccessorImpl delegate;

    DelegatingMethodAccessorImpl(MethodAccessorImpl delegate) {

        setDelegate(delegate);

    }

    public Object invoke(Object obj, Object[] args)

            throws IllegalArgumentException, InvocationTargetException {

        return delegate.invoke(obj, args);

    }

    void setDelegate(MethodAccessorImpl delegate) {

        this.delegate = delegate;

    }  

进行 ma.invoke(obj, args); 调用时,调用 DelegatingMethodAccessorImpl.invoke();

最后被委托到 NativeMethodAccessorImpl.invoke(), 即:

 public Object invoke(Object obj, Object[] args)

            throws IllegalArgumentException, InvocationTargetException {

// We can't inflate methods belonging to vm-anonymous classes because

// that kind of class can't be referred to by name, hence can't be

// found from the generated bytecode.

        if (++numInvocations > ReflectionFactory.inflationThreshold()

                && !ReflectUtil.isVMAnonymousClass(method.getDeclaringClass())) {

            MethodAccessorImpl acc = (MethodAccessorImpl)

                    new MethodAccessorGenerator().

                            generateMethod(method.getDeclaringClass(),

                                    method.getName(),

                                    method.getParameterTypes(),

                                    method.getReturnType(),

                                    method.getExceptionTypes(),

                                    method.getModifiers());

            parent.setDelegate(acc);

        }
  

// invoke0 是个 native 方法,由jvm进行调用业务方法。从而完成反射调用功能。

return invoke0(method, obj, args);

}

其中, generateMethod() 是生成具体类的方法:

 /**
 * This routine is not thread-safe
 */
public MethodAccessor generateMethod(Class<?> declaringClass,

                                     String name,

                                     Class<?>[] parameterTypes,

                                     Class<?> returnType,

                                     Class<?>[] checkedExceptions,

                                     int modifiers) {

    return (MethodAccessor) generate(declaringClass,

            name,

            parameterTypes,

            returnType,

            checkedExceptions,

            modifiers,

            false,

            false,

            null);

}  

generate() 戳详情。

 /**
 * This routine is not thread-safe
 */
private MagicAccessorImpl generate(final Class<?> declaringClass,

        String name,

        Class<?>[]parameterTypes,

        Class<?> returnType,

        Class<?>[]checkedExceptions,

        int modifiers,

        boolean isConstructor,

        boolean forSerialization,

        Class<?> serializationTargetClass)

        {

        ByteVector vec=ByteVectorFactory.create();

        asm=new ClassFileAssembler(vec);

        this.declaringClass=declaringClass;

        this.parameterTypes=parameterTypes;

        this.returnType=returnType;

        this.modifiers=modifiers;

        this.isConstructor=isConstructor;

        this.forSerialization=forSerialization;

        asm.emitMagicAndVersion();

// Constant pool entries:

// ( * = Boxing information: optional)

// (+ = Shared entries provided by AccessorGenerator)

// (^ = Only present if generating SerializationConstructorAccessor)

// [UTF-8] [This class's name]

// [CONSTANT_Class_info] for above

// [UTF-8] "sun/reflect/{MethodAccessorImpl,ConstructorAccessorImpl,SerializationConstructorAccessorImpl}"

// [CONSTANT_Class_info] for above

// [UTF-8] [Target class's name]

// [CONSTANT_Class_info] for above

// ^ [UTF-8] [Serialization: Class's name in which to invoke constructor]

// ^ [CONSTANT_Class_info] for above

// [UTF-8] target method or constructor name

// [UTF-8] target method or constructor signature

// [CONSTANT_NameAndType_info] for above

// [CONSTANT_Methodref_info or CONSTANT_InterfaceMethodref_info] for target method

// [UTF-8] "invoke" or "newInstance"

// [UTF-8] invoke or newInstance descriptor

// [UTF-8] descriptor for type of non-primitive parameter 1

// [CONSTANT_Class_info] for type of non-primitive parameter 1

// ...

// [UTF-8] descriptor for type of non-primitive parameter n

// [CONSTANT_Class_info] for type of non-primitive parameter n

// + [UTF-8] "java/lang/Exception"

// + [CONSTANT_Class_info] for above

// + [UTF-8] "java/lang/ClassCastException"

// + [CONSTANT_Class_info] for above

// + [UTF-8] "java/lang/NullPointerException"

// + [CONSTANT_Class_info] for above

// + [UTF-8] "java/lang/IllegalArgumentException"

// + [CONSTANT_Class_info] for above

// + [UTF-8] "java/lang/InvocationTargetException"

// + [CONSTANT_Class_info] for above

// + [UTF-8] "<init>"

// + [UTF-8] "()V"

// + [CONSTANT_NameAndType_info] for above

// + [CONSTANT_Methodref_info] for NullPointerException's constructor

// + [CONSTANT_Methodref_info] for IllegalArgumentException's constructor

// + [UTF-8] "(Ljava/lang/String;)V"

// + [CONSTANT_NameAndType_info] for "<init>(Ljava/lang/String;)V"

// + [CONSTANT_Methodref_info] for IllegalArgumentException's constructor taking a String

// + [UTF-8] "(Ljava/lang/Throwable;)V"

// + [CONSTANT_NameAndType_info] for "<init>(Ljava/lang/Throwable;)V"

// + [CONSTANT_Methodref_info] for InvocationTargetException's constructor

// + [CONSTANT_Methodref_info] for "super()"

// + [UTF-8] "java/lang/Object"

// + [CONSTANT_Class_info] for above

// + [UTF-8] "toString"

// + [UTF-8] "()Ljava/lang/String;"

// + [CONSTANT_NameAndType_info] for "toString()Ljava/lang/String;"

// + [CONSTANT_Methodref_info] for Object's toString method

// + [UTF-8] "Code"

// + [UTF-8] "Exceptions"

// * [UTF-8] "java/lang/Boolean"

// * [CONSTANT_Class_info] for above

// * [UTF-8] "(Z)V"

// * [CONSTANT_NameAndType_info] for above

// * [CONSTANT_Methodref_info] for above

// * [UTF-8] "booleanValue"

// * [UTF-8] "()Z"

// * [CONSTANT_NameAndType_info] for above

// * [CONSTANT_Methodref_info] for above

// * [UTF-8] "java/lang/Byte"

// * [CONSTANT_Class_info] for above

// * [UTF-8] "(B)V"

// * [CONSTANT_NameAndType_info] for above

// * [CONSTANT_Methodref_info] for above

// * [UTF-8] "byteValue"

// * [UTF-8] "()B"

// * [CONSTANT_NameAndType_info] for above

// * [CONSTANT_Methodref_info] for above

// * [UTF-8] "java/lang/Character"

// * [CONSTANT_Class_info] for above

// * [UTF-8] "(C)V"

// * [CONSTANT_NameAndType_info] for above

// * [CONSTANT_Methodref_info] for above

// * [UTF-8] "charValue"

// * [UTF-8] "()C"

// * [CONSTANT_NameAndType_info] for above

// * [CONSTANT_Methodref_info] for above

// * [UTF-8] "java/lang/Double"

// * [CONSTANT_Class_info] for above

// * [UTF-8] "(D)V"

// * [CONSTANT_NameAndType_info] for above

// * [CONSTANT_Methodref_info] for above

// * [UTF-8] "doubleValue"

// * [UTF-8] "()D"

// * [CONSTANT_NameAndType_info] for above

// * [CONSTANT_Methodref_info] for above

// * [UTF-8] "java/lang/Float"

// * [CONSTANT_Class_info] for above

// * [UTF-8] "(F)V"

// * [CONSTANT_NameAndType_info] for above

// * [CONSTANT_Methodref_info] for above

// * [UTF-8] "floatValue"

// * [UTF-8] "()F"

// * [CONSTANT_NameAndType_info] for above

// * [CONSTANT_Methodref_info] for above

// * [UTF-8] "java/lang/Integer"

// * [CONSTANT_Class_info] for above

// * [UTF-8] "(I)V"

// * [CONSTANT_NameAndType_info] for above

// * [CONSTANT_Methodref_info] for above

// * [UTF-8] "intValue"

// * [UTF-8] "()I"

// * [CONSTANT_NameAndType_info] for above

// * [CONSTANT_Methodref_info] for above

// * [UTF-8] "java/lang/Long"

// * [CONSTANT_Class_info] for above

// * [UTF-8] "(J)V"

// * [CONSTANT_NameAndType_info] for above

// * [CONSTANT_Methodref_info] for above

// * [UTF-8] "longValue"

// * [UTF-8] "()J"

// * [CONSTANT_NameAndType_info] for above

// * [CONSTANT_Methodref_info] for above

// * [UTF-8] "java/lang/Short"

// * [CONSTANT_Class_info] for above

// * [UTF-8] "(S)V"

// * [CONSTANT_NameAndType_info] for above

// * [CONSTANT_Methodref_info] for above

// * [UTF-8] "shortValue"

// * [UTF-8] "()S"

// * [CONSTANT_NameAndType_info] for above

// * [CONSTANT_Methodref_info] for above

        short numCPEntries=NUM_BASE_CPOOL_ENTRIES+NUM_COMMON_CPOOL_ENTRIES;

        boolean usesPrimitives=usesPrimitiveTypes();

        if(usesPrimitives){

        numCPEntries+=NUM_BOXING_CPOOL_ENTRIES;

        }

        if(forSerialization){

        numCPEntries+=NUM_SERIALIZATION_CPOOL_ENTRIES;

        }

// Add in variable-length number of entries to be able to describe

// non-primitive parameter types and checked exceptions.

        numCPEntries+=(short)(2*numNonPrimitiveParameterTypes());

        asm.emitShort(add(numCPEntries,S1));

final String generatedName=generateName(isConstructor,forSerialization);

        asm.emitConstantPoolUTF8(generatedName);

        asm.emitConstantPoolClass(asm.cpi());

        thisClass=asm.cpi();

        if(isConstructor){

        if(forSerialization){

        asm.emitConstantPoolUTF8

        ("sun/reflect/SerializationConstructorAccessorImpl");

        }else{

        asm.emitConstantPoolUTF8("sun/reflect/ConstructorAccessorImpl");

        }

        }else{

        asm.emitConstantPoolUTF8("sun/reflect/MethodAccessorImpl");

        }

        asm.emitConstantPoolClass(asm.cpi());

        superClass=asm.cpi();

        asm.emitConstantPoolUTF8(getClassName(declaringClass,false));

        asm.emitConstantPoolClass(asm.cpi());

        targetClass=asm.cpi();

        short serializationTargetClassIdx=(short)0;

        if(forSerialization){

        asm.emitConstantPoolUTF8(getClassName(serializationTargetClass,false));

        asm.emitConstantPoolClass(asm.cpi());

        serializationTargetClassIdx=asm.cpi();

        }

        asm.emitConstantPoolUTF8(name);

        asm.emitConstantPoolUTF8(buildInternalSignature());

        asm.emitConstantPoolNameAndType(sub(asm.cpi(),S1),asm.cpi());

        if(isInterface()){

        asm.emitConstantPoolInterfaceMethodref(targetClass,asm.cpi());

        }else{

        if(forSerialization){

        asm.emitConstantPoolMethodref(serializationTargetClassIdx,asm.cpi());

        }else{

        asm.emitConstantPoolMethodref(targetClass,asm.cpi());

        }

        }

        targetMethodRef=asm.cpi();

        if(isConstructor){

        asm.emitConstantPoolUTF8("newInstance");

        }else{

        asm.emitConstantPoolUTF8("invoke");

        }

        invokeIdx=asm.cpi();

        if(isConstructor){

        asm.emitConstantPoolUTF8("([Ljava/lang/Object;)Ljava/lang/Object;");

        }else{

        asm.emitConstantPoolUTF8

        ("(Ljava/lang/Object;[Ljava/lang/Object;)Ljava/lang/Object;");

        }

        invokeDescriptorIdx=asm.cpi();

// Output class information for non-primitive parameter types

        nonPrimitiveParametersBaseIdx=add(asm.cpi(),S2);

        for(int i=0;i<parameterTypes.length;i++){

        Class<?> c=parameterTypes[i];

        if(!isPrimitive(c)){

        asm.emitConstantPoolUTF8(getClassName(c,false));

        asm.emitConstantPoolClass(asm.cpi());

        }

        }

// Entries common to FieldAccessor, MethodAccessor and ConstructorAccessor

        emitCommonConstantPoolEntries();

// Boxing entries

        if(usesPrimitives){

        emitBoxingContantPoolEntries();

        }

        if(asm.cpi()!=numCPEntries){

        throw new InternalError("Adjust this code (cpi = "+asm.cpi()+

        ", numCPEntries = "+numCPEntries+")");

        }

// Access flags

        asm.emitShort(ACC_PUBLIC);

// This class

        asm.emitShort(thisClass);

// Superclass

        asm.emitShort(superClass);

// Interfaces count and interfaces

        asm.emitShort(S0);

// Fields count and fields

        asm.emitShort(S0);

// Methods count and methods

        asm.emitShort(NUM_METHODS);

        emitConstructor();

        emitInvoke();

// Additional attributes (none)

        asm.emitShort(S0);

// Load class

        vec.trim();

final byte[]bytes=vec.getData();

// Note: the class loader is the only thing that really matters

// here -- it's important to get the generated code into the

// same namespace as the target class. Since the generated code

// is privileged anyway, the protection domain probably doesn't

// matter.

        return AccessController.doPrivileged(

        new PrivilegedAction<MagicAccessorImpl>(){

public MagicAccessorImpl run(){

        try{

        return(MagicAccessorImpl)

        ClassDefiner.defineClass

        (generatedName,

        bytes,

        0,

        bytes.length,

        declaringClass.getClassLoader()).newInstance();

        }catch(InstantiationException|IllegalAccessException e){

        throw new InternalError(e);

        }

        }

        });

        }  

咱们主要看这一句:ClassDefiner.defineClass(xx, declaringClass.getClassLoader()).newInstance();

在ClassDefiner.defineClass方法实现中,每被调用一次都会生成一个DelegatingClassLoader类加载器对象 ,这里每次都生成新的类加载器,是为了性能考虑,在某些情况下可以卸载这些生成的类,因为类的卸载是只有在类加载器可以被回收的情况下才会被回收的,如果用了原来的类加载器,那可能导致这些新创建的类一直无法被卸载。

而反射生成的类,有时候可能用了就可以卸载了,所以使用其独立的类加载器,从而使得更容易控制反射类的生命周期。

反射调用流程小结

最后,用几句话总结反射的实现原理:

反射类及反射方法的获取,都是通过从列表中搜寻查找匹配的方法,所以查找性能会随类的大小方法多少而变化;

每个类都会有一个与之对应的Class实例,从而每个类都可以获取method反射方法,并作用到其他实例身上;

反射也是考虑了线程安全的,放心使用;

反射使用软引用relectionData缓存class信息,避免每次重新从jvm获取带来的开销;

反射调用多次生成新代理Accessor, 而通过字节码生存的则考虑了卸载功能,所以会使用独立的类加载器;

当找到需要的方法,都会copy一份出来,而不是使用原来的实例,从而保证数据隔离;

调度反射方法,最终是由jvm执行invoke0()执行

文章来源:智云一二三科技

文章标题:java菜鸟到大佬——全网最全反射机制讲解

文章地址:https://www.zhihuclub.com/176554.shtml

关于作者: 智云科技

热门文章

网站地图