序
本文主要研究一下Java 9的Compact Strings
Compressed Strings(Java 6)
Java 6引入了Compressed Strings,对于one byte per char acter使用byte[],对于two bytes per character继续使用char[];之前可以使用-XX:+UseCompressedStrings来开启,不过在java7被废弃了,然后在java8被移除
Compact Strings(Java 9)
Java 9引入了Compact Strings来取代Java 6的Compressed Strings,它的实现更过彻底,完全使用byte[]来替代char[],同时新引入了一个字段coder来标识是LATIN1还是UTF16
String
java.base/java/lang/String.java
public final class String
implements java.io.Serializable, Comparable<String>, CharSequence,
Constable, ConstantDesc {
/**
* The value is used for character storage.
*
* @implNote This field is trusted by the VM, and is a subject to
* constant folding if String instance is constant. Overwriting this
* field after construction will cause problems.
*
* Additionally, it is marked with {@link Stable} to trust the contents
* of the array. No other facility in JDK provides this functionality (yet).
* {@link Stable} is safe here, because value is never null.
*/ @Stable
private final byte[] value;
/**
* The identifier of the encoding used to encode the bytes in
* {@code value}. The supported values in this implementation are
*
* LATIN1
* UTF16
*
* @implNote This field is trusted by the VM, and is a subject to
* constant folding if String instance is constant. Overwriting this
* field after construction will cause problems.
*/ private final byte coder;
/** Cache the hash code for the string */ private int hash; // Default to 0
/** use serialVersionUID from JDK 1.0.2 for interoperability */ private static final long serialVersionUID = -6849794470754667710L;
/**
* If String compaction is disabled, the bytes in {@code value} are
* always encoded in UTF16.
*
* For methods with several possible implementation paths, when String
* compaction is disabled, only one code path is taken.
*
* The instance field value is generally opaque to optimizing JIT
* compilers. Therefore, in performance-sensitive place, an explicit
* check of the static boolean {@code COMPACT_STRINGS} is done first
* before checking the {@code coder} field since the static boolean
* {@code COMPACT_STRINGS} would be constant folded away by an
* optimizing JIT compiler. The idioms for these cases are as follows.
*
* For code such as:
*
* if (coder == LATIN1) { ... }
*
* can be written more optimally as
*
* if (coder() == LATIN1) { ... }
*
* or:
*
* if (COMPACT_STRINGS && coder == LATIN1) { ... }
*
* An optimizing JIT compiler can fold the above conditional as:
*
* COMPACT_STRINGS == true => if (coder == LATIN1) { ... }
* COMPACT_STRINGS == false => if (false) { ... }
*
* @implNote
* The actual value for this field is injected by JVM. The static
* initialization block is used to set the value here to communicate
* that this static final field is not statically foldable, and to
* avoid any possible circular dependency during vm initialization.
*/ static final boolean COMPACT_STRINGS;
static {
COMPACT_STRINGS = true;
}
/**
* Class String is special cased within the Serialization Stream Protocol.
*
* A String instance is written into an ObjectOutputStream according to
* <a href="{@docRoot}/../specs/serialization/protocol.html#stream-elements">
* Object Serialization Specification, Section 6.2, "Stream Elements"</a>
*/ private static final ObjectStreamField[] serialPersistentFields =
new ObjectStreamField[0];
/**
* Initializes a newly created {@code String} object so that it represents
* an empty character sequence. Note that use of this constructor is
* unnecessary since Strings are immutable.
*/ public String() {
this.value = "".value;
this.coder = "".coder;
}
//......
public char charAt(int index) {
if (isLatin1()) {
return StringLatin1.charAt(value, index);
} else {
return StringUTF16.charAt(value, index);
}
}
public boolean equals(Object anObject) {
if (this == anObject) {
return true;
}
if (anObject instanceof String) {
String aString = (String)anObject;
if (coder() == aString.coder()) {
return isLatin1() ? StringLatin1.equals(value, aString.value)
: StringUTF16.equals(value, aString.value);
}
}
return false;
}
public int compareTo(String anotherString) {
byte v1[] = value;
byte v2[] = anotherString.value;
if (coder() == anotherString.coder()) {
return isLatin1() ? StringLatin1.compareTo(v1, v2)
: StringUTF16.compareTo(v1, v2);
}
return isLatin1() ? StringLatin1.compareToUTF16(v1, v2)
: StringUTF16.compareToLatin1(v1, v2);
}
public int hashCode () {
int h = hash;
if (h == 0 && value.length > 0) {
hash = h = isLatin1() ? StringLatin1.hashCode(value)
: StringUTF16.hashCode(value);
}
return h;
}
public int indexOf(int ch, int fromIndex) {
return isLatin1() ? StringLatin1.indexOf(value, ch, fromIndex)
: StringUTF16.indexOf(value, ch, fromIndex);
}
public String substring(int beginIndex) {
if (beginIndex < 0) {
throw new StringIndexOutOfBoundsException(beginIndex);
}
int subLen = length() - beginIndex;
if (subLen < 0) {
throw new StringIndexOutOfBoundsException(subLen);
}
if (beginIndex == 0) {
return this;
}
return isLatin1() ? StringLatin1.newString(value, beginIndex, subLen)
: StringUTF16.newString(value, beginIndex, subLen);
}
//......
byte coder() {
return COMPACT_STRINGS ? coder : UTF16;
}
byte[] value() {
return value;
}
private boolean isLatin1() {
return COMPACT_STRINGS && coder == LATIN1;
}
@Native static final byte LATIN1 = 0;
@Native static final byte UTF16 = 1;
//......
}
- COMPACT_STRINGS默认为true,即该特性默认是开启的
- coder方法判断COMPACT_STRINGS为true的话,则返回coder值,否则返回UTF16;isLatin1方法判断COMPACT_STRINGS为true且coder为LATIN1则返回true
- 诸如charAt、equals、hashCode、indexOf、substring等等一系列方法都依赖isLatin1方法来区分对待是StringLatin1还是StringUTF16
StringConcatFactory
实例
public class Java9StringDemo { public static void main(String[] args){ String stringLiteral = "tom"; String stringObject = stringLiteral + "cat"; } }
- 这段代码stringObject由变量stringLiteral及cat拼接而来
javap
javac src/main/java/com/example/javac/Java9StringDemo.java javap -v src/main/java/com/example/javac/Java9StringDemo.class Last modified 2019年4月7日; size 770 bytes MD5 checksum fecfca9c829402c358c4d5cb948004ff Compiled from "Java9StringDemo.java" public class com.example.javac.Java9StringDemo minor version: 0 major version: 56 flags : (0x0021) ACC_PUBLIC, ACC_SUPER this_class: #4 // com/example/javac/Java9StringDemo super_class: #5 // java/lang/Object interfaces: 0, fields: 0, methods: 2, attributes: 3 Constant pool: #1 = Methodref #5.#14 // java/lang/Object."<init>":()V #2 = String #15 // tom #3 = InvokeDynamic #0:#19 // #0:makeConcatWithConstants:(Ljava/lang/String;)Ljava/lang/String; #4 = Class #20 // com/example/javac/Java9StringDemo #5 = Class #21 // java/lang/Object #6 = Utf8 <init> #7 = Utf8 ()V #8 = Utf8 Code #9 = Utf8 LineNumberTable #10 = Utf8 main #11 = Utf8 ([Ljava/lang/String;)V #12 = Utf8 SourceFile #13 = Utf8 Java9StringDemo.java #14 = NameAndType #6:#7 // "<init>":()V #15 = Utf8 tom #16 = Utf8 BootstrapMethods #17 = MethodHandle 6:#22 // REF_invokeStatic java/lang/invoke/StringConcatFactory.makeConcatWithConstants:(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/MethodType;Ljava/lang/String;[Ljava/lang/Object;)Ljava/lang/invoke/CallSite; #18 = String #23 // \u0001cat #19 = NameAndType #24:#25 // makeConcatWithConstants:(Ljava/lang/String;)Ljava/lang/String; #20 = Utf8 com/example/javac/Java9StringDemo #21 = Utf8 java/lang/Object #22 = Methodref #26.#27 // java/lang/invoke/StringConcatFactory.makeConcatWithConstants:(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/MethodType;Ljava/lang/String;[Ljava/lang/Object;)Ljava/lang/invoke/CallSite; #23 = Utf8 \u0001cat #24 = Utf8 makeConcatWithConstants #25 = Utf8 (Ljava/lang/String;)Ljava/lang/String; #26 = Class #28 // java/lang/invoke/StringConcatFactory #27 = NameAndType #24:#32 // makeConcatWithConstants:(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/MethodType;Ljava/lang/String;[Ljava/lang/Object;)Ljava/lang/invoke/CallSite; #28 = Utf8 java/lang/invoke/StringConcatFactory #29 = Class #34 // java/lang/invoke/MethodHandles$Lookup #30 = Utf8 Lookup #31 = Utf8 InnerClasses #32 = Utf8 (Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/MethodType;Ljava/lang/String;[Ljava/lang/Object;)Ljava/lang/invoke/CallSite; #33 = Class #35 // java/lang/invoke/MethodHandles #34 = Utf8 java/lang/invoke/MethodHandles$Lookup #35 = Utf8 java/lang/invoke/MethodHandles { public com.example.javac.Java9StringDemo(); descriptor: ()V flags: (0x0001) ACC_PUBLIC Code: stack=1, locals=1, args_size=1 0: aload_0 1: invokespecial #1 // Method java/lang/Object."<init>":()V 4: return LineNumberTable: line 8: 0 public static void main(java.lang.String[]); descriptor: ([Ljava/lang/String;)V flags: (0x0009) ACC_PUBLIC, ACC_STATIC Code: stack=1, locals=3, args_size=1 0: ldc #2 // String tom 2: astore_1 3: aload_1 4: invokedynamic #3, 0 // InvokeDynamic #0:makeConcatWithConstants:(Ljava/lang/String;)Ljava/lang/String; 9: astore_2 10: return LineNumberTable: line 11: 0 line 12: 3 line 13: 10 } SourceFile: "Java9StringDemo.java" InnerClasses: public static final #30= #29 of #33; // Lookup=class java/lang/invoke/MethodHandles$Lookup of class java/lang/invoke/MethodHandles BootstrapMethods: 0: #17 REF_invokeStatic java/lang/invoke/StringConcatFactory.makeConcatWithConstants:(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/MethodType;Ljava/lang/String;[Ljava/lang/Object;)Ljava/lang/invoke/CallSite; Method arguments: #18 \u0001cat
- javap之后可以看到通过Java 9利用InvokeDynamic调用了StringConcatFactory.makeConcatWithConstants方法进行字符串拼接优化;而Java 8则是通过转换为 StringBuilder 来进行优化
StringConcatFactory.makeConcatWithConstants
java.base/java/lang/invoke/StringConcatFactory.java
public final class StringConcatFactory { //...... /** * Concatenation strategy to use. See {@link Strategy} for possible options. * This option is controllable with -Djava.lang.invoke.stringConcat JDK option. */ private static Strategy STRATEGY; /** * Default strategy to use for concatenation. */ private static final Strategy DEFAULT_STRATEGY = Strategy.MH_INLINE_SIZED_EXACT; private enum Strategy { /** * Bytecode generator, calling into {@link java.lang.StringBuilder}. */ BC_SB, /** * Bytecode generator, calling into {@link java.lang.StringBuilder}; * but trying to estimate the required storage. */ BC_SB_SIZED, /** * Bytecode generator, calling into {@link java.lang.StringBuilder}; * but computing the required storage exactly. */ BC_SB_SIZED_EXACT, /** * MethodHandle-based generator, that in the end calls into {@link java.lang.StringBuilder}. * This strategy also tries to estimate the required storage. */ MH_SB_SIZED, /** * MethodHandle-based generator, that in the end calls into {@link java.lang.StringBuilder}. * This strategy also estimate the required storage exactly. */ MH_SB_SIZED_EXACT, /** * MethodHandle-based generator, that constructs its own byte[] array from * the arguments. It computes the required storage exactly. */ MH_INLINE_SIZED_EXACT } static { // In case we need to double-back onto the StringConcatFactory during this // static initialization, make sure we have the reasonable defaults to complete // the static initialization properly. After that, actual users would use // the proper values we have read from the properties. STRATEGY = DEFAULT_STRATEGY; // CACHE_ENABLE = false; // implied // CACHE = null; // implied // DEBUG = false; // implied // DUMPER = null; // implied Properties props = GetPropertyAction.privilegedGetProperties(); final String strategy = props.getProperty("java.lang.invoke.stringConcat"); CACHE_ENABLE = Boolean.parseBoolean( props.getProperty("java.lang.invoke.stringConcat.cache")); DEBUG = Boolean.parseBoolean( props.getProperty("java.lang.invoke.stringConcat.debug")); final String dumpPath = props.getProperty("java.lang.invoke.stringConcat.dumpClasses"); STRATEGY = (strategy == null) ? DEFAULT_STRATEGY : Strategy.valueOf(strategy); CACHE = CACHE_ENABLE ? new ConcurrentHashMap<>() : null; DUMPER = (dumpPath == null) ? null : ProxyClassesDumper.getInstance(dumpPath); } public static CallSite makeConcatWithConstants(MethodHandles.Lookup lookup, String name, MethodType concatType, String recipe, Object... constants) throws StringConcatException { if (DEBUG) { System.out.println("StringConcatFactory " + STRATEGY + " is here for " + concatType + ", {" + recipe + "}, " + Arrays.toString(constants)); } return doStringConcat(lookup, name, concatType, false, recipe, constants); } private static CallSite doStringConcat(MethodHandles.Lookup lookup, String name, MethodType concatType, boolean generateRecipe, String recipe, Object... constants) throws StringConcatException { Objects.requireNonNull(lookup, "Lookup is null"); Objects.requireNonNull(name, "Name is null"); Objects.requireNonNull(concatType, "Concat type is null"); Objects.requireNonNull(constants, "Constants are null"); for (Object o : constants) { Objects.requireNonNull(o, "Cannot accept null constants"); } if ((lookup.lookupModes() & MethodHandles.Lookup.PRIVATE) == 0) { throw new StringConcatException("Invalid caller: " + lookup.lookupClass().getName()); } int cCount = 0; int oCount = 0; if (generateRecipe) { // Mock the recipe to reuse the concat generator code char[] value = new char[concatType.parameterCount()]; Arrays.fill(value, TAG_ARG); recipe = new String(value); oCount = concatType.parameterCount(); } else { Objects.requireNonNull(recipe, "Recipe is null"); for (int i = 0; i < recipe.length(); i++) { char c = recipe.charAt(i); if (c == TAG_CONST) cCount++; if (c == TAG_ARG) oCount++; } } if (oCount != concatType.parameterCount()) { throw new StringConcatException( "Mismatched number of concat arguments: recipe wants " + oCount + " arguments, but signature provides " + concatType.parameterCount()); } if (cCount != constants.length) { throw new StringConcatException( "Mismatched number of concat constants: recipe wants " + cCount + " constants, but only " + constants.length + " are passed"); } if (!concatType.returnType().isAssignableFrom(String.class)) { throw new StringConcatException( "The return type should be compatible with String, but it is " + concatType.returnType()); } if (concatType.parameterSlotCount() > MAX_INDY_CONCAT_ARG_SLOTS) { throw new StringConcatException("Too many concat argument slots: " + concatType.parameterSlotCount() + ", can only accept " + MAX_INDY_CONCAT_ARG_SLOTS); } String className = getClassName(lookup.lookupClass()); MethodType mt = adaptType(concatType); Recipe rec = new Recipe(recipe, constants); MethodHandle mh; if (CACHE_ENABLE) { Key key = new Key(className, mt, rec); mh = CACHE.get(key); if (mh == null) { mh = generate(lookup, className, mt, rec); CACHE.put(key, mh); } } else { mh = generate(lookup, className, mt, rec); } return new ConstantCallSite(mh.asType(concatType)); } private static MethodHandle generate(Lookup lookup, String className, MethodType mt, Recipe recipe) throws StringConcatException { try { switch (STRATEGY) { case BC_SB: return BytecodeStringBuilderStrategy.generate(lookup, className, mt, recipe, Mode.DEFAULT); case BC_SB_SIZED: return BytecodeStringBuilderStrategy.generate(lookup, className, mt, recipe, Mode.SIZED); case BC_SB_SIZED_EXACT: return BytecodeStringBuilderStrategy.generate(lookup, className, mt, recipe, Mode.SIZED_EXACT); case MH_SB_SIZED: return MethodHandleStringBuilderStrategy.generate(mt, recipe, Mode.SIZED); case MH_SB_SIZED_EXACT: return MethodHandleStringBuilderStrategy.generate(mt, recipe, Mode.SIZED_EXACT); case MH_INLINE_SIZED_EXACT: return MethodHandleInlineCopyStrategy.generate(mt, recipe); default: throw new StringConcatException("Concatenation strategy " + STRATEGY + " is not implemented"); } } catch (Error | StringConcatException e) { // Pass through any error or existing StringConcatException throw e; } catch (Throwable t) { throw new StringConcatException("Generator failed", t); } } //...... }
- makeConcatWithConstants方法内部调用了doStringConcat,而doStringConcat方法则调用了generate方法来生成MethodHandle;generate根据不同的STRATEGY来生成MethodHandle,这些STRATEGY有BC_SB、BC_SB_SIZED、BC_SB_SIZED_EXACT、MH_SB_SIZED、MH_SB_SIZED_EXACT、MH_INLINE_SIZED_EXACT,默认是MH_INLINE_SIZED_EXACT(可以通过-Djava.lang.invoke.stringConcat来改变默认的策略)
小结
- Java 9引入了Compact Strings来取代Java 6的Compressed Strings,它的实现更过彻底,完全使用byte[]来替代char[],同时新引入了一个字段coder来标识是LATIN1还是UTF16
- isLatin1方法判断COMPACT_STRINGS为true且coder为LATIN1则返回true;诸如charAt、equals、hashCode、indexOf、substring等等一系列方法都依赖isLatin1方法来区分对待是StringLatin1还是StringUTF16
- Java 9利用InvokeDynamic调用了StringConcatFactory.makeConcatWithConstants方法进行字符串拼接优化,相比于Java 8通过转换为StringBuilder来进行优化,Java 9提供了多种STRATEGY可供选择,这些STRATEGY有BC_SB(等价于Java 8的优化方式)、BC_SB_SIZED、BC_SB_SIZED_EXACT、MH_SB_SIZED、MH_SB_SIZED_EXACT、MH_INLINE_SIZED_EXACT,默认是MH_INLINE_SIZED_EXACT(可以通过-Djava.lang.invoke.stringConcat来改变默认的策略)
doc
- String Compaction
- JEP 254: Compact Strings
- Java 9: Compact Strings
- Compact Strings In Java 9
- Java 9 Compact Strings Example
- Evolution of Strings in Java to Compact Strings and Indify String Concatenation