您的位置 首页 java

从零开发一款Android RTMP播放器

整体架构设计

播放器整体播放流程如下:

从零开发一款Android RTMP播放器

通过srs-librtmp拉取直播流,通过package type分离音视频流,将 package 数据缓存到package队列,解码线程不断从package队列读取package交由解码器解码,解码器将解码后的 frame 存储到frame队列,opensles播放线程与 opengles 渲染线程从frame队列读取frame播放与渲染,这里还涉及到音视频同步。

播放器主要涉及了以下线程:

  1. rtmp 拉流线程;
  2. 音频解码线程;
  3. 视频解码线程;
  4. 音频播放线程;
  5. 视频渲染线程;
  6. Jni 回调线程。

API接口设计

通过以下几步即可完成rtmp播放:

  1. 实例化OARPlayer:OARPlayer player = new OARPlayer();
  2. 设置视频源:player.setDataSource(rtmp_url);
  3. 设置surface:player.setSurface(surfaceView.getHolder());
  4. 开始播放:player.start();
  5. 停止播放:player.stop();
  6. 释放资源:player.release();

Java 层方法封装了JNI层方法,JNI层封装调用了对应的具体功能。

rtmp拉流线程

oarplayer使用的是srs-librtmp,srs-librtmp是从SRS服务器导出的一个客户端库,作者提供srs-librtmp初衷是:

  1. 觉得rtmpdump/librtmp的代码太难读了,而SRS的代码可读性很好;
  2. 压测工具srs-bench是个客户端,需要一个客户端库;
  3. 觉得服务器能搞好,客户端也不在话下

目前srs-librtmp作者已经停止维护,主要原因如作者所说:

【更多音视频学习资料, 点击下方链接免费领取↓↓ ,先码住不迷路~】

oarplayer当初使用srs-librtmp是基于srs-librtmp代码的可读性考虑。oarplayer有相当高的模块化特性,可以很方便的替换各个rtmp lib实现。这里介绍srs-librtmp接口:

  1. 创建srs_rtmp_t对象:srs_rtmp_create(url);
  2. 设置读写超时时间:srs_rtmp_set_timeout;
  3. 开始握手:srs_rtmp_handshake;
  4. 开始连接:srs_rtmp_connect_app;
  5. 设置播放模式:srs_rtmp_play_stream;
  6. 循环读取音视频包:srs_rtmp_read_packet(rtmp, &type, &timestamp, &data, &size);
  7. 解析音频包: 获取编码类型:srs_utils_flv_audio_sound_format; 获取音频采样率:srs_utils_flv_audio_sound_rate; 获取采样位深:srs_utils_flv_audio_sound_size; 获取声道数:srs_utils_flv_audio_sound_type; 获取音频包类型:srs_utils_flv_audio_aac_packet_type;
  8. 解析视频包: 获取编码类型:srs_utils_flv_video_codec_id; 是否关键帧:srs_utils_flv_video_ Frame _type; 获取视频包类型:srs_utils_flv_video_avc_packet_type;
  9. 解析 metadata 类型;
  10. 销毁srs_rtmp_t对象:srs_rtmp_destroy;

这里有个小技巧,我们在拉流线程中,循环调用srs_rtmp_read_packet方法,可以通过srs_rtmp_set_timeout设置超时时间,但是如果超时时间设置的太短,会导致频繁的唤起 线程 ,如果设置超时时间太长,我们在停止时,必须等待超时结束才会能真正结束。这里我们可以使用 poll 模型,将rtmp的tcp socket放入poll中,再放入一个管道fd,在需要停止时向管道写入一个指令,唤醒poll,直接停止rtmp拉流线程。

5. 主要数据结构

5.1 package结构:

typedef struct OARPacket {

int size;//包大小

PktType_e type;//包类型

int64_t dts;//解码时间戳

int64_t pts;//显示时间戳

int isKeyframe;//是否关键帧

struct OARPacket *next;//下一个包地址

uint8_t data[0];//包数据内容

}OARPacket;

5.2 package队列:

typedef struct oar_packet_queue {

PktType_e media_type;//类型

pthread_mutex_t *mutex;//线程锁

pthread _cond_t *cond;//条件变量

OARPacket *cachedPackets;//队列首地址

OARPacket *lastPacket;//队列最后一个元素

int count;//数量

int total_bytes;//总字节数

uint64_t max_duration;//最大时长

void (*full_cb)(void *);//队列满回调

void (*empty_cb)(void *);//队列为空回调

void *cb_data;

} oar_packet_queue;

5.3 Frame类型

typedef struct OARFrame {

int size;//帧大小

PktType_e type;//帧类型

int64_t dts;//解码时间戳

int64_t pts;//显示时间戳

int format;//格式(用于视频)

int width;//宽(用于视频)

int height;//高(用于视频)

int64_t pkt_pos;

int sample_rate;//采样率(用于音频)

struct OARFrame *next;

uint8_t data[0];

}OARFrame;

5.4 Frame队列

typedef struct oar_frame_queue {

pthread_mutex_t *mutex;

pthread_cond_t *cond;

OARFrame *cachedFrames;

OARFrame *lastFrame;

int count;//帧数量

unsigned int size;

} oar_frame_queue;

6. 解码线程

我们的rtmp流拉取、解码、渲染、音频输出都在C层实现。在C层,Android 21之后系统提供了AMediaCodec接口,我们直接find_library(media-ndk mediandk),并引入<media/NdkMediaCodec.h>头文件即可。对于Android 21之前版本,可以在C层调用Java层的MediaCodec。下面分别介绍两种实现:

6.1 Java层代理解码

Java层MediaCodec解码使用步骤:

  1. 创建解码器:codec = MediaCodec.createDecoderByType(codecName);
  2. 配置解码器格式:codec.configure(format, null, null, 0);
  3. 启动解码器:codec.start()
  4. 获取解码输入缓存ID:dequeueInputBuffer
  5. 获取解码输入缓存:getInputBuffer
  6. 获取解码输出缓存:dequeueOutputBufferIndex
  7. 释放输出缓存:releaseOutPutBuffer
  8. 停止解码器:codec.stop();

Jni层封装对应的调用接口即可。

6.2 C层解码器使用

C层接口介绍:

  1. 创建Format:AMediaFormat_new;
  2. 创建解码器:AMediaCodec_createDecoderByType;
  3. 配置解码参数:AMediaCodec_configure;
  4. 启动解码器:AMediaCodec_start;
  5. 输入音视频包: 获取输入buffer序列:AMediaCodec_dequeueInputBuffer 获取输入buffer:AMediaCodec_getInputBuffer 拷贝数据:memcpy 输入buffer放入解码器:AMediaCodec_queueInputBuffer
  6. 获取解码后帧: 获取输出buffer序列:AMediaCodec_dequeueOutputBuffer 获取输出buffer:AMediaCodec_getOutputBuffer

我们发现不管是Java层还是C层的接口都是提供了类似的思路,其实他们最终调用的还是系统的解码框架。

这里我们可以根据系统版本来觉得使用Java层接口和C层接口,我们的oarplayer,主要的代码都是在C层实现,所以我们也有限使用C层接口。

7. 音频输出线程

音频输出我们使用opensl实现,之前文章介绍过Android音频架构,其实也可以使用AAudio或者Oboe。这里再简单介绍下opensl es的使用。

  1. 创建引擎:slCreateEngine(&engineObject, 0, NULL, 0, NULL, NULL);
  2. 实现引擎:(*engineObject)->Realize(engineObject, SL_BOOLEAN_FALSE);
  3. 获取接口:(*engineObject)->GetInterface(engineObject, SL_IID_ENGINE, &engineEngine);
  4. 创建输出 混流器 :(*engineEngine)->CreateOutputMix(engineEngine, &outputMixObject, 0, NULL, NULL);;
  5. 实现混流器:(*outputMixObject)->Realize(outputMixObject, SL_BOOLEAN_FALSE);
  6. 配置音频源:SLDataLocator_AndroidSimpleBufferQueue loc_bufq = {SL_DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE, 2};
  7. 配置Format:SLDataFormat_PCM format_pcm = {SL_DATAFORMAT_PCM, channel, SL_SAMPLINGRATE_44_1,SL_PCMSAMPLEFORMAT_FIXED_16, SL_PCMSAMPLEFORMAT_FIXED_16,SL_SPEAKER_FRONT_LEFT | SL_SPEAKER_FRONT_RIGHT, SL_BYTEORDER_LITTLEENDIAN};
  8. 创建播放器:(*engineEngine)->CreateAudioPlayer(engineEngine,&bqPlayerObject, &audioSrc, &audioSnk,2, ids, req);
  9. 实现播放器:(*bqPlayerObject)->Realize(bqPlayerObject, SL_BOOLEAN_FALSE);
  10. 获取播放接口:(*bqPlayerObject)->GetInterface(bqPlayerObject, SL_IID_PLAY, &bqPlayerPlay);
  11. 获取缓冲区接口:(*bqPlayerObject)->GetInterface(bqPlayerObject, SL_IID_ANDROIDSIMPLEBUFFERQUEUE,&bqPlayerBufferQueue);
  12. 注册缓存回调:(*bqPlayerBufferQueue)->RegisterCallback(bqPlayerBufferQueue, bqPlayerCallback, oar);
  13. 获取音量调节器:(*bqPlayerObject)->GetInterface(bqPlayerObject, SL_IID_VOLUME, &bqPlayerVolume);
  14. 缓存回调中不断的从音频帧队列读取数据,并写入缓存队列:(*bqPlayerBufferQueue)->Enqueue(bqPlayerBufferQueue, ctx->buffer,(SLuint32)ctx->frame_size);

上面就是音频播放的opensl es接口使用介绍。

【更多音视频学习资料, 点击下方链接免费领取↓↓ ,先码住不迷路~】

8. 渲染线程

相比较于音频播放,视频渲染可能更复杂一些,除了 opengl 引擎创建,opengl线程创建,oarplayer使用的是基于音频的同步方式,所以在视频渲染时还需要考虑音视频同步问题。

8.1 OpenGL引擎创建

  1. 生成buffer:glGenBuffers
  2. 绑定buffer:glBindBuffer(GL_ARRAY_BUFFER, model->vbos[0])
  3. 设置清屏色: glClearColor
  4. 创建纹理对象:texture2D
  5. 创建着色器对象:glCreateShader
  6. 设置着色器源码:glShaderSource
  7. 编译着色器源码:glCompileShader
  8. 附着着色器:glAttachShader
  9. 连接着色器:glLinkProgram

opengl与硬件交互还需要EGL环境,下面展示EGL初始化流程代码:

static void init_ egl (oarplayer * oar){

oar_video_render_context *ctx = oar->video_render_ctx;

const EGLint attribs[] = {EGL_SURFACE_TYPE, EGL_WINDOW_BIT, EGL_RENDERABLE_TYPE,

EGL_OPENGL_ES2_BIT, EGL_BLUE_SIZE, 8, EGL_GREEN_SIZE, 8, EGL_RED_SIZE,

8, EGL_ALPHA_SIZE, 8, EGL_DEPTH_SIZE, 0, EGL_STENCIL_SIZE, 0,

EGL_NONE};

EGLint numConfigs;

ctx->display = eglGetDisplay(EGL_DEFAULT_DISPLAY);

EGLint majorVersion, minorVersion;

eglInitialize(ctx->display, &majorVersion, &minorVersion);

eglChooseConfig(ctx->display, attribs, &ctx->config, 1, &numConfigs);

ctx->surface = egl CreateWindow Surface(ctx->display, ctx->config, ctx->window, NULL);

EGLint attrs[] = {EGL_CONTEXT_CLIENT_VERSION, 2, EGL_NONE};

ctx->context = eglCreateContext(ctx->display, ctx->config, NULL, attrs);

EGLint err = eglGetError();

if (err != EGL_SUCCESS) {

LOGE(“egl error”);

}

if (eglMakeCurrent(ctx->display, ctx->surface, ctx->surface, ctx->context) == EGL_FALSE) {

LOGE(“——EGL-FALSE”);

}

eglQuerySurface(ctx->display, ctx->surface, EGL_WIDTH, &ctx->width);

eglQuerySurface(ctx->display, ctx->surface, EGL_HEIGHT, &ctx->height);

initTexture(oar);

oar_java_class * jc = oar->jc;

JNIEnv * jniEnv = oar->video_render_ctx->jniEnv;

jobject surface_texture = (*jniEnv)->CallStaticObjectMethod(jniEnv, jc->SurfaceTextureBridge, jc->texture_getSurface, ctx->texture[3]);

ctx->texture_window = ANativeWindow_fromSurface(jniEnv, surface_texture);

}

8.2 音视频同步

常见的音视频同步有三种:

  1. 基于视频同步;
  2. 基于音频同步;
  3. 基于第三方时间戳同步。

这里我们使用基于音频帧同步的方法,渲染画面时,判断音频时间戳 diff 与视频画面渲染周期,如果大于周期,则等待,如果大于0小于周期,如果小于0则立马绘制。

下面展示渲染代码:

/**

*

* @param oar

* @param frame

* @return 0 draw

* -1 sleep 33ms continue

* -2 break

*/

static inline int draw_video_frame(oarplayer *oar) {

// 上一次可能没有画, 这种情况就不需要取新的了

if (oar->video_frame == NULL) {

oar->video_frame = oar_frame_queue_get(oar->video_frame_queue);

}

// buffer empty ==> sleep 10ms , return 0

// eos ==> return -2

if (oar->video_frame == NULL) {

_LOGD(“video_frame is null…”);

usleep (BUFFER_EMPTY_SLEEP_US);

return 0;

}

int64_t time_stamp = oar->video_frame->pts;

int64_t diff = 0;

if(oar->metadata->has_audio){

diff = time_stamp – (oar->audio_clock->pts + oar->audio_player_ctx->get_delta_time(oar->audio_player_ctx));

}else{

diff = time_stamp – oar_clock_get(oar->video_clock);

}

_LOGD(“time_stamp:%lld, clock:%lld, diff:%lld”,time_stamp , oar_clock_get(oar->video_clock), diff);

oar_model *model = oar->video_render_ctx->model;

// diff >= 33ms if draw_mode == wait_frame return -1

// if draw_mode == fixed_frequency draw previous frame ,return 0

// diff > 0 && diff < 33ms sleep(diff) draw return 0

// diff <= 0 draw return 0

if (diff >= WAIT_FRAME_SLEEP_US) {

if (oar->video_render_ctx->draw_mode == wait_frame) {

return -1;

} else {

draw_now(oar->video_render_ctx);

return 0;

}

} else {

// if diff > WAIT_FRAME_SLEEP_US then use previous frame

// else use current frame and release frame

// LOGI(“start draw…”);

pthread_mutex_lock(oar->video_render_ctx->lock);

model->update_frame(model, oar->video_frame);

pthread_mutex_unlock(oar->video_render_ctx->lock);

oar_player_release_video_frame(oar, oar->video_frame);

JNIEnv * jniEnv = oar->video_render_ctx->jniEnv;

(*jniEnv)->CallStaticVoidMethod(jniEnv, oar->jc->SurfaceTextureBridge, oar->jc->texture_updateTexImage);

jfloatArray texture_matrix_array = (*jniEnv)->CallStaticObjectMethod(jniEnv, oar->jc->SurfaceTextureBridge, oar->jc->texture_getTransformMatrix);

(*jniEnv)->GetFloatArrayRegion(jniEnv, texture_matrix_array, 0, 16, model->texture_matrix);

(*jniEnv)->DeleteLocalRef(jniEnv, texture_matrix_array);

if (diff > 0) usleep((useconds_t) diff);

draw_now(oar->video_render_ctx);

oar_clock_set(oar->video_clock, time_stamp);

return 0;

}

}

9. 总结

本文基于Android端的RTMP播放器实现过程,介绍了RTMP推拉流库、Android MediaCodec Java层与C层接口、OpenSL ES接口、OpenGL ES接口、EGL接口、以及音视频相关知识。

文章来源:智云一二三科技

文章标题:从零开发一款Android RTMP播放器

文章地址:https://www.zhihuclub.com/182663.shtml

关于作者: 智云科技

热门文章

网站地图