您的位置 首页 java

用Java创建你的第一个区块链-part1

前言

本系列教程旨在帮助你了解如何开发区块链技术。

本章目标

  • 创建你第一个非常基本的区块链
  • 实现一个简单的工作量证明系统即挖矿
  • 在此基础上进行扩展

(我会假设你对面向对象编程有基本的了解)

值得注意的是,这里创建的区块链并不是功能完全的完全适合应用与生产的 区块 链,相反只是为了帮助你更好的理解区块链的概念。

创建区块链

区块链就是一串或者是一系列区块的集合,类似于链表的概念,每个区块都指向于后面一个区块,然后顺序的连接在一起。那么每个区块中的内容是什么呢?在区块链中的每一个区块都存放了很多很有价值的信息,主要包括三个部分:自己的数字签名,上一个区块的数字签名,还有一切需要加密的数据(这些数据在比特币中就相当于是交易的信息,它是加密货币的本质)。每个数字签名不但证明了自己是特有的一个区块,而且指向了前一个区块的来源,让所有的区块在链条中可以串起来,而数据就是一些特定的信息,你可以按照业务逻辑来保存业务数据。

这里的hash指的就是数字签名

所以每一个区块不仅包含前一个区块的hash值,同时包含自身的一个hash值,自身的hash值是通过之前的hash值和数据data通过hash计算出来的。如果前一个区块的数据一旦被篡改了,那么前一个区块的hash值也会同样发生变化(因为数据也被计算在内),这样也就导致了所有后续的区块中的hash值。所以计算和比对hash值会让我们检查到当前的区块链是否是有效的,也就避免了数据被恶意篡改的可能性,因为篡改数据就会改变hash值并破坏整个区块链。

定义区块链的类快

import java.util.Date;
public class Block {
public String hash;
public String previousHash;
private String data; //our data will be a simple message.
private long timeStamp; //as number of milliseconds since 1/1/1970.
// Block  Constructor.
public Block(String data,String previousHash ) {
this.data = data;
this.previousHash = previousHash;
this.timeStamp = new Date().getTime();
}
}
 

正如你可以看到我们的基本块包含String hash,它将保存我们的数字签名。变量previoushash保存前一个块的hash和String data来保存我们的块数据

创建数字签名

熟悉加密算法的朋友们,Java方式可以实现的加密方式有很多,例如BASE、MD、RSA、SHA等等,我在这里选用了 SHA256 这种加密方式,SHA(Secure Hash Algorithm)安全散列算法,这种算法的特点是数据的少量更改会在Hash值中产生不可预知的大量更改,hash值用作表示大量数据的固定大小的唯一值,而SHA256算法的hash值大小为256位。之所以选用SHA256是因为它的大小正合适,一方面产生重复hash值的可能性很小,另一方面在区块链实际应用过程中,有可能会产生大量的区块,而使得信息量很大,那么256位的大小就比较恰当了。

下面我创建了一个StringUtil方法来方便调用SHA256算法

import java.security.MessageDigest;
public class StringUtil {
//Applies Sha256 to a string and returns the result. 
public static String applySha256(String input){
try {
MessageDigest digest = MessageDigest.getInstance("SHA-256"); 
//Applies sha256 to our input, 
byte[] hash = digest.digest(input.getBytes("UTF-8")); 
StringBuffer hexString = new StringBuffer(); // This will contain hash as hexidecimal
for (int i = 0; i < hash.length; i++) {
String hex = Integer.toHexString(0xff & hash[i]);
if(hex.length() == 1) hexString.append('0');
hexString.append(hex);
}
return hexString. toString ();
}
catch(Exception e) {
throw new RuntimeException(e);
}
}
}
 

或许你完全不理解上述代码的含义,但是你只要理解所有的输入调用此方法后均会生成一个独一无二的hash值(数字签名),而这个hash值在区块链中是非常重要的。

接下来让我们在Block类中应用 方法 applySha256 方法,其主要的目的就是计算hash值,我们计算的hash值应该包括区块中所有我们不希望被恶意篡改的数据,在我们上面所列的Block类中就一定包括previousHash,data和timeStamp,

public String calculateHash() {
String calculatedhash = StringUtil.applySha256( 
previousHash +
Long.toString(timeStamp) +
data 
);
return calculatedhash;
}
 

然后把这个方法加入到Block的构造函数中去

public Block(String data,String previousHash ) {
this.data = data;
this.previousHash = previousHash;
this.timeStamp = new Date().getTime();
this.hash = calculateHash(); //Making sure we do this after we set the other values.
}
 

测试

在主方法中让我们创建一些区块,并把其hash值打印出来,来看看是否一切都在我们的掌控中。

第一个块称为创世纪区块,因为它是头区块,所以我们只需输入“0”作为前一个块的previous hash。

public class NoobChain {
public static void main(String[] args) {

Block genesisBlock = new Block("Hi im the first block", "0");
System.out.println("Hash for block 1 : " + genesisBlock.hash);

Block secondBlock = new Block("Yo im the second block",genesisBlock.hash);
System.out.println("Hash for block 2 : " + secondBlock.hash);

Block thirdBlock = new Block("Hey im the third block",secondBlock.hash);
System.out.println("Hash for block 3 : " + thirdBlock.hash);

}
}
 

打印:

Hash for block 1: f6d1bc5f7b0016eab53ec022db9a5d9e1873ee78513b1c666696e66777fe55fb
Hash for block 2: 6936612b3380660840f22ee6cb8b72ffc01dbca5369f305b92018321d883f4a3
Hash for block 3: f3e58f74b5adbd59a7a1fc68c97055d42e94d33f6c322d87b29ab20d3c959b8f
 

每一个区块都必须要有自己的数据签名即hash值,这个hash值依赖于自身的信息(data)和上一个区块的数字签名(previousHash),但这个还不是区块链,下面让我们存储区块到数组中,这里我会引入gson包,目的是可以用json方式查看整个一条区块链结构。

import java.util.ArrayList;
import com.google.gson.GsonBuilder;
public class NoobChain {

public static ArrayList<Block> blockchain = new ArrayList<Block>(); 
public static void main(String[] args) {
//add our blocks to the blockchain ArrayList:
blockchain.add(new Block("Hi im the first block", "0"));
blockchain.add(new Block("Yo im the second block",blockchain.get(blockchain.size()-1).hash)); 
blockchain.add(new Block("Hey im the third block",blockchain.get(blockchain.size()-1).hash));

String blockchainJson = new GsonBuilder().setPrettyPrinting().create().toJson(blockchain);
System.out.println(blockchainJson);
}
}
 

这样的输出结构就更类似于我们所期待的区块链的样子。

检查区块链的完整性

在主方法中增加一个isChainValid()方法,目的是循环区块链中的所有区块并且比较hash值,这个方法用来检查hash值是否是于计算出来的hash值相等,同时previousHash值是否和前一个区块的hash值相等。或许你会产生如下的疑问,我们就在一个主函数中创建区块链中的区块,所以不存在被修改的可能性,但是你要注意的是,区块链中的一个核心概念就是去中心化,每一个区块可能是在网络中的某一个节点中产生的,所以很有可能某个节点把自己节点中的数据修改了,那么根据上述的理论数据改变会导致整个区块链的破裂,也就是区块链就无效了。

public static Boolean isChainValid() {
Block currentBlock; 
Block previousBlock;

//loop through blockchain to check hashes:
for(int i=1; i < blockchain.size(); i++) {
currentBlock = blockchain.get(i);
previousBlock = blockchain.get(i-1);
//compare registered hash and calculated hash:
if(!currentBlock.hash.equals(currentBlock.calculateHash()) ){
System.out.println("Current Hashes not equal");
return false;
}
//compare previous hash and registered previous hash
if(!previousBlock.hash.equals(currentBlock.previousHash) ) {
System.out.println("Previous Hashes not equal");
return false;
}
}
return true;
}
 

任何区块链中区块的一丝一毫改变都会导致这个函数返回false,也就证明了区块链无效了。

在比特币网络中所有的网络节点都分享了它们各自的区块链,然而最长的有效区块链是被全网所统一承认的,如果有人恶意来篡改之前的数据,然后创建一条更长的区块链并全网发布呈现在网络中,我们该怎么办呢?这就涉及到了区块链中另外一个重要的概念工作量证明,这里就不得不提及一下hashcash,这个概念最早来自于Adam Back的一篇论文,主要应用于邮件过滤和比特币中防止双重支付。

挖矿

这里我们要求挖矿者做工作量证明,具体的方式是在区块中尝试不同的参数值直到它的hash值是从一系列的0开始的。让我们添加一个名为nonce的int类型以包含在我们的calculatehash()方法中,以及需要的mineblock()方法

import java.util.Date;
public class Block {

public String hash;
public String previousHash; 
private String data; //our data will be a simple message.
private long timeStamp; //as number of milliseconds since 1/1/1970.
private int nonce;

//Block Constructor. 
public Block(String data,String previousHash ) {
this.data = data;
this.previousHash = previousHash;
this.timeStamp = new Date().getTime();

this.hash = calculateHash(); //Making sure we do this after we set the other values.
}

//Calculate new hash based on blocks contents
public String calculateHash() {
String calculatedhash = StringUtil.applySha256( 
previousHash +
Long.toString(timeStamp) +
Integer.toString(nonce) + 
data 
);
return calculatedhash;
}

public void mineBlock(int difficulty) {
String target = new String(new char[difficulty]).replace('', '0'); //Create a string with difficulty * "0" 
while(!hash.substring( 0, difficulty).equals(target)) {
nonce ++;
hash = calculateHash();
}
System.out.println("Block Mined!!! : " + hash);
}
}
 

mineBlock()方法中引入了一个int值称为difficulty难度,低的难度比如1和2,普通的电脑基本都可以马上计算出来,我的建议是在4-6之间进行测试,普通电脑大概会花费3秒时间,在莱特币中难度大概围绕在442592左右,而在比特币中每一次挖矿都要求大概在10分钟左右,当然根据所有网络中的计算能力,难度也会不断的进行修改。

我们在NoobChain类 中增加difficulty这个静态变量。

public static int difficulty = 5;
 

这样我们必须修改主方法中让创建每个新区块时必须触发mineBlock()方法,而isChainValid()方法用来检查每个区块的hash值是否正确,整个区块链是否是有效的。

import java.util.ArrayList;
import com.google.gson.GsonBuilder;
public class NoobChain {

public static ArrayList<Block> blockchain = new ArrayList<Block>();
public static int difficulty = 5;
public static void main(String[] args) {
//add our blocks to the blockchain ArrayList:

blockchain.add(new Block("Hi im the first block", "0"));
System.out.println("Trying to Mine block 1... ");
blockchain.get(0).mineBlock(difficulty);

blockchain.add(new Block("Yo im the second block",blockchain.get(blockchain.size()-1).hash));
System.out.println("Trying to Mine block 2... ");
blockchain.get(1).mineBlock(difficulty);

blockchain.add(new Block("Hey im the third block",blockchain.get(blockchain.size()-1).hash));
System.out.println("Trying to Mine block 3... ");
blockchain.get(2).mineBlock(difficulty);

System.out.println("nBlockchain is Valid: " + isChainValid());

String blockchainJson = new GsonBuilder().setPrettyPrinting().create().toJson(blockchain);
System.out.println("nThe block chain: ");
System.out.println(blockchainJson);
}

public static Boolean isChainValid() {
Block currentBlock; 
Block previousBlock;
String hashTarget = new String(new char[difficulty]).replace('', '0');

//loop through blockchain to check hashes:
for(int i=1; i < blockchain.size(); i++) {
currentBlock = blockchain.get(i);
previousBlock = blockchain.get(i-1);
//compare registered hash and calculated hash:
if(!currentBlock.hash.equals(currentBlock.calculateHash()) ){
System.out.println("Current Hashes not equal");
return false;
}
//compare previous hash and registered previous hash
if(!previousBlock.hash.equals(currentBlock.previousHash) ) {
System.out.println("Previous Hashes not equal");
return false;
}
//check if hash is solved
if(!currentBlock.hash.substring( 0, difficulty).equals(hashTarget)) {
System.out.println("This block hasn't been mined");
return false;
}
}
return true;
}
}
 

打印:

Connected to the target VM, address: '127.0.0.1:61863', transport: 'socket'
Trying to Mine block 1... 
Block Mined!!! : 0000016667d4240e9c30f53015310b0ec6ce99032d7e1d66d670afc509cab082
Trying to Mine block 2... 
Block Mined!!! : 000002ea55735bea4cac7e358c7b0d8d81e8ca24021f5f85211bf54fd4ac795a
Trying to Mine block 3... 
Block Mined!!! : 000000576987e5e9afbdf19b512b2b7d0c56db0e6ca49b3a7e638177f617994b
Blockchain is Valid: true
[
 {
 "hash": "0000016667d4240e9c30f53015310b0ec6ce99032d7e1d66d670afc509cab082",
 "previousHash": "0",
 "data": "first",
 "timeStamp": 1520659506042,
 "nonce": 618139
 },
 {
 "hash": "000002ea55735bea4cac7e358c7b0d8d81e8ca24021f5f85211bf54fd4ac795a",
 "previousHash": "0000016667d4240e9c30f53015310b0ec6ce99032d7e1d66d670afc509cab082",
 "data": "second",
 "timeStamp": 1520659508825,
 "nonce": 1819877
 },
 {
 "hash": "000000576987e5e9afbdf19b512b2b7d0c56db0e6ca49b3a7e638177f617994b",
 "previousHash": "000002ea55735bea4cac7e358c7b0d8d81e8ca24021f5f85211bf54fd4ac795a",
 "data": "third",
 "timeStamp": 1520659515910,
 "nonce": 1404341
 }
]
 

经过测试增加一个新的区块即挖矿必须花费一定时间,大概是3秒左右,你可以提高difficulty难度来看,它是如何影响数据难题所花费的时间的

如果有人在你的区块链系统中恶意篡改数据:

  1. 他们的区块链是无效的。
  2. 他们无法创建更长的区块链
  3. 网络中诚实的区块链会在长链中更有时间的优势

因为篡改的区块链将无法赶上长链和有效链,除非他们比你网络中所有的节点拥有更大的计算速度,可能是未来的量子计算机或者是其他什么。

你已经完成了你的基本区块链!

你的区块链:

  • 有很多区块组成用来存储数据
  • 有数字签名让你的区块链链接在一起
  • 需要挖矿的工作量证明新的区块
  • 可以用来检查数据是否是有效的同时是未经篡改的

原文链接:Creating Your First Blockchain with Java. Part 1.

代码下载

从我的 github 中下载,

文章来源:智云一二三科技

文章标题:用Java创建你的第一个区块链-part1

文章地址:https://www.zhihuclub.com/188070.shtml

关于作者: 智云科技

热门文章

网站地图